INSUMOS BIOLÓGICOS Y REPELENTES ORGÁNICOS PARA EL CONTROL DE PLAGAS

MANUELA GARCÍA HERNÁNDEZ

TCU- 468 AGRICULTURA ORGÁNICA URBANA
UNIVERSIDAD DE COSTA RICA

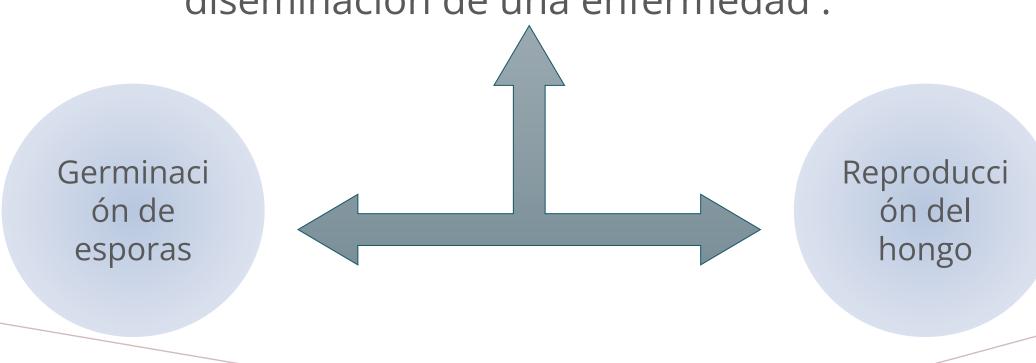
IMPACTO DEL USO DE AGROQUÍMICOS

- La mayoría de estas moléculas presentaban una alta toxicidad.
- Muchos poseen alta residualidad.
- Uso indiscriminado o una disposición inadecuada de residuos sólidos.
- En el año 2011 Costa Rica Fue catalogado como el país número 1 en el uso de agroquímicos del mundo.

¿QUÉ ES LA AGRICULTURA SUSTENTABLE?

Una alternativa para reducir el impacto de la agricultura sobre el ambiente, adoptando prácticas que fomenten mejorar la protección del ambiente, la resiliencia de los sistemas, y la eficiencia en el uso de los recursos.

¿QUÉ ES UN INSUMO BIOLÓGICO?


Producto que encuentra elaborado a partir de organismos benéficos como bacterias, hongos e insectos que presentan antagonismos diversas plagas agrícolas.

Producción más sostenible Aumenta la biodiversida d del sistema

Ideal para productore s orgánicos

CONTROL DE ENFERMEDADES

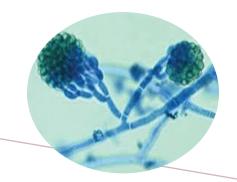
Se busca reducir el inóculo del agente causal de la enfermedad y las actividades involucradas en la diseminación de una enfermedad.

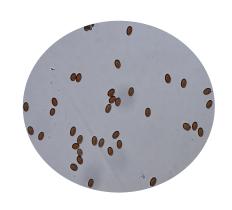
MECANISMO DE ACCIÓN

Poseen efecto parasítico causando deformación, enrollamiento, penetración y ruptura de las hifas de los hongos.

• Esto genera alteraciones las funciones biológicas y fisiológicas del patógeno.

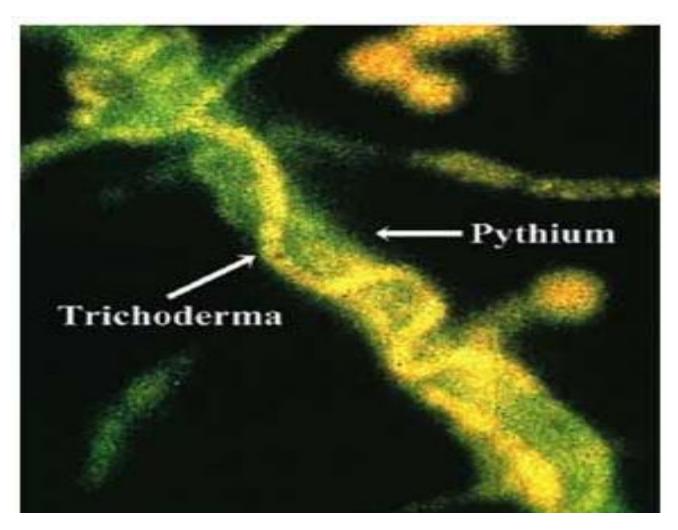
HONGOS


• Trichoderma sp.


• Gliocladium sp.

• Coniothyrium sp.

• Candida sp.

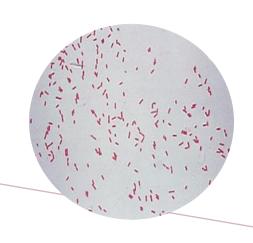


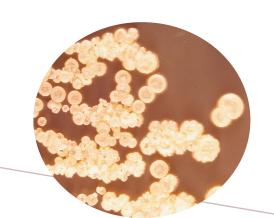
TRICHODERMA

Trichoderma sp. colonizando Hongo fitopatógeno Phytium sp.

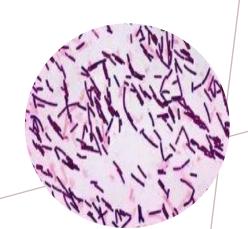
Cuadro I. Enfermedades controladas por *Trichoderma spp.*

Especie controlada	Enfermedad	Cultivos
Amillaria spp.	Pudrición en las raíces	Frutales
Botrytis cinerea	Moho gris	Hortalizas y ornamentales
Colletrotichum spp.	Antracnosis	Hortalizas y ornamentales
Fusarium spp.	Pudrición y marchitamiento	Hortalizas y ornamentales
Phytophthora spp.	Pudrición de la raíz	Hortalizas y ornamentales
Phythium spp.	Pudrición algodonosa y volcamiento	Hortalizas y ornamentales
Rizoctonia solani	Pudrición algodonosa y volcamiento	Hortalizas y ornamentales
Sclerotinia sclerotioruum	Pudrición algodonosa y volcamiento	Hortalizas y ornamentales


BACTERIAS


• Pseudomonas sp.

• Streptomyces sp.


• Bacillus sp.

• Agrobacterium sp.

Cuadro II. Enfermedades controladas por diversos microrganismos antagonistas.

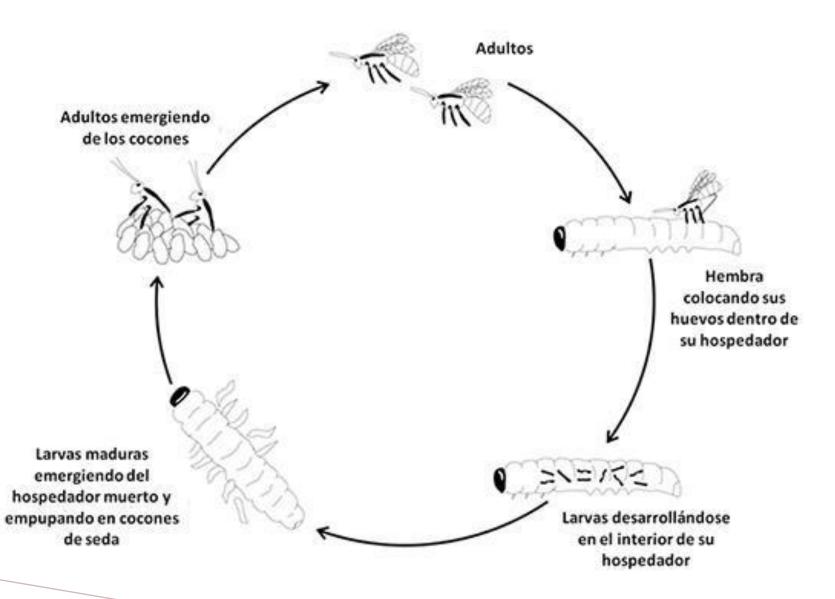
Microorganismo	Patógeno/Enfermedad que controla	Cultivos
Paenibacillus lentimorbus	Fusarium oxysporum/ Pudrición y marchitamiento	Tomate
Pseudomonas gladioli	Ralstonia solanacearum/ Moko del banano	Banano y plátano
Streptomyces griseovirides	Fusarium sp, Rhizoctonia sp, Phytium sp y Alternaria sp / Pudrición en las raíces y mancha foliar	Amplio rango de cultivos
Bacillus subtilis	Fusarium sp, Rhizoctonia sp, Arpergillus y Alternaria sp. / Pudrición en las raíces y mancha foliar	Amplio rango de cultivos

CONTROL DE INSECTOS

ENTOMOPATÓGENOS

1 Invasión y adhesión 2 Germinació n y penetració n

3 Multiplicaci ón, liberación y muerte



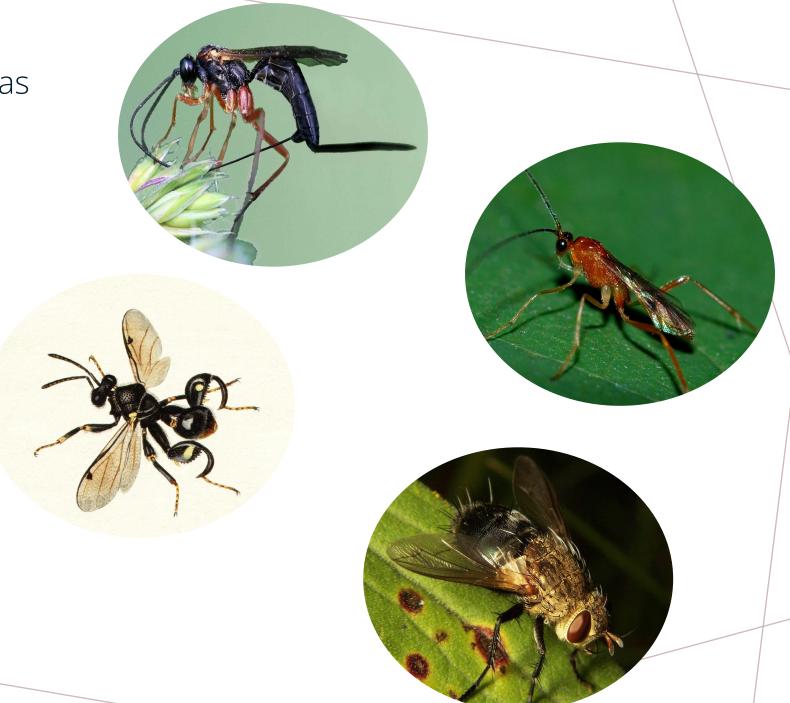
Control con Beauveria bassiana

Cuadro III. Hongos entomopatógenos para el control biológico de insectos.

Especie	Insecto plaga
Beauveria bassiana	Langostas, chapulines, áfidos, escarabajos, mosca blanca
Beauveria brogniartii	Moscas y escarabajos
Metharizium anisopliae	Termitas, chapulines, jobotos, langosta, picudos del chile y escarabajos
Paecelomyces fumosoroseus	Mosca blanca
Verticillium lecanii	Pulgones, Trips, mosca blanca

PARASITOIDES

Avispa ovipositando en áfido


Manduca sexta parasitada por larvas de Cotesia congregata

Avispas Ichneumonidas

Avispas Bracónicas

Avispas Calcídidas

Moscas Taquínidas

DEPREDADORES

VENTAJAS VS. DESVENTAJAS DEL CONTROL BIOLÓGICO

VENTAJAS

- Son una alternativa más sostenible.
- Algunas alternativas son de amplio rango de control.
- Disminuye la carga química de los cultivos que se están produciendo.

DESVENTAJAS

- La eficacia depende de factores ambientales.
- Es necesario conocer incompatibilidades entre productos para obtener los resultados esperados.
- Es difícil controlar un problema fitosanitario cuando el ataque es severo.

¿QUÉ ES UN REPELENTE ORGÁNICO?

Son compuestos líquidos y sólidos hechos a base de extractos vegetales que presentan sustancias insecticidas.

- Causar la simple repelencia.
- Causa la muerte.

VENTAJAS

 Alternativa sostenible con el ambiente.

• Es económica, de fácil elaboración y aplicación.

 Ideales para controlar plagas en nuestros jardines.

DESVENTAJAS

 Muchos requieren almacenamiento en frío porque son perecederos.

• A altas dosis pueden generar quemas en el cultivo.

TÉ DE TOMATE

Preparación:

- Hervir 1 Kg de hojas y tallos de tomate en 5 litros de agua y dejar enfriar por 2 horas.
- Se debe colar y diluir en 15 litros de agua
- Agregar ½ de barra de jabón neutro (adherente)

Insectos controlados:

Minador de la hoja, pulgones, hormigas y cochinilla h

Almacenamiento y aplicación:

Almacenar máximo 24 horas. Cada 4-5 días.

TÉ DE AJO, CHILE Y CEBOLLA

Preparación:

- Moler 6 chiles picantes, 12 dientes de ajo, 1 cebolla grande.
- Mezclar con 3 galones de agua (11.4 litros).
- Agregar ¼ de barra de jabón rayado.
- Revolver todos los ingredientes y dejar reposar 12 l

Insectos controlados:

Repelente de insectos en general.

Almacenamiento y aplicación:

Almacenamiento: 1 semana en refrigeración. A la sombra máximo 2 días. Aplicar cada 6-8 días de forma preventiva. Cada 4-5 días cuando hay presencia de la plaga.

ZACATE LIMÓN

Preparación:

- Cocinar hojas frescas durante 1 hora, en una porción 1:1
- ☐ Filtrar aún caliente, dejar enfriar y filtrar.

Insectos controlados:

Repelente y tóxico contra áfidos, ácaros, moscas, mosquitos y nematodo Meloidogyne incognita.

Almacenamiento y aplicación:

Almacenar máximo 24 horas. Cada 8 día

EXTRACTO DE ALBAHACA

Preparación:

- □ Adicionar 1 Kg de hojas y flores a 4.5 L de agua.
- Dejar fermentar durante 8 días.
- Diluir 1 litro de esta solución en 15 litros de agua
- Agregar 28.34 gramos de jabón neutro.

Insectos controlados:

Polillas, moscas, mosquitos, escarabajos, pulgones, gusanos y ácaros.

Almacenamiento y aplicación:

Aplicar cada 8 días. Almacenar en refrigeración.

JABÓN DE BARRA

Preparación:

- Rallar 1 barra de jabón blanco (sin perfume) en 10 litros de agua de lluvia o reposada.
- □ Filtrar
- Aplicar sobre la planta afectada.

Insectos controlados:

Control de insectos chupadores (aplicar en la mañana o la tarde).

Dosis:

10 litros para 100m2. Aplicar cada 4-5 días.

Literatura consultada

- Cabrera, M y Contreras, N. 2005. Manual de agricultura orgánica sostenible. Benson Agriculture and Food Institute. 52-55 p. https://docplayer.es/84689276-Manual-de-agricultura-organica-sustentable.html
- Chirinos, J, Leal, A, Montilla, J. (2007). Uso de Insumos Biológicos como Alternativa para la Agricultura Sostenible en la Zona Sur del Estado Anzoátegui. Instituto Nacional de Investigaciones Agrícolas. El Tigre, estado Anzoátegui. Venezuela. (Consultado en línea el 11 de febrero del 2021). https://www.engormix.com/agricultura/articulos/insumos-biologicos-como-alternativa-la-agricultura-sostenible-t26902.htm
- Colmenarez, Y, Bettiol, W, Mondino, P, Rivera, M, Montealegre, J, Vasquez,C. (2014). Control Biológico de Enfermedades de Plantas en América Latina y el Caribe. https://www.researchgate.net/publication/272086423 Control Biologico de Enfermedades de Plantas en America Latina y el Caribe
- del Puerto-Rodríguez, A.M, Suárez-Tamayo, Susana, Palacio-Estrada, D.E. (2014). Efectos de los plaguicidas sobre el ambiente y la salud. Revista Cubana de Higiene y Epidemiología, 52(3), 372-387. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1561-30032014000300010&lng=es&tlng=es
- Food and Agriculture Organization (2021, 05 de febrero). Objetivos del desarrollo sostenible http://www.fao.org/sustainable-development-goals/overview/fao-and-post-2015/sustainable-agriculture/es/

Literatura consultada

- Food and Agriculture Organization (2021, 05 de febrero). Costa Rica: Número uno del mundo en uso de agroquímicos. http://www.fao.org/in-action/agronoticias/detail/es/c/508248/
- García, C. y Félix, J. 2014. Manual para la producción de abonos orgánicos y bioracionales. Fundación produce Sinaloa.

 1 ed. 92-137 p. https://www.researchgate.net/publication/287982466 Manual para la produccion de abonos organicos y bioracionales
- Intagri. (s.f). Trichoderma Control de Hongos Fitopatógenos. (Consultado en línea el 03 de marzo del 2021) https://www.intagri.com/articulos/fitosanidad/trichoderma-control-de-hongos-fitopatogenos
- Ministerio de Agricultura Ganadería y Pesca Argentina. Bioinsumos: un giro hacia la sustentabilidad. (Consultado en línea el 09 de febrero del 2021) <a href="http://www.alimentosargentinos.gob.ar/HomeAlimentos/Publicaciones/revistas/nota.php?id=200#:~:text=El%20t%C3%A9rmino%20%E2%80%9Cbioinsumos%E2%80%9D%20alude%20a,el%20desarrollo%20de%20las%20plantas
- Molpeceres, M.C, Ceverio, R, Brieva, S.S. (2019). Agroquímicos: cambios en la agenda internacional e instrumentos de regulación en Argentina (1950-2015). Estudios Socioterritoriales (25). http://portal.amelica.org/ameli/jatsRepo/32/32724024/html/index.html

Literatura consultada

- Montoya, M.L, Restrepo, F.M, Moreno, N, Mejía, PA. (2013). Impacto del manejo de agroquímicos, parte alta de la microcuenca Chorro Hondo, Marinilla. Revista Facultad Nacional de Salud Pública, 32(2), 26-35. https://www.redalyc.org/pdf/120/12030433004.pdf
- Sanjuán-Pinilla, J, Moreno-Sarmiento, N. (2010). Aplicación de insumos biológicos: una oportunidad para la agricultura sostenible y amigable con el medioambiente. Revista Colombiana de Biotecnología, 12(1), 4-7. http://www.scielo.org.co/scielo.php?script=sci arttext&pid=S0123-34752010000100001&Ing=en&tIng=es.
- Torres, D, Capote, T. (2004). Agroquímicos un problema ambiental global: uso del análisis químico como herramienta para el monitoreo ambiental. Ecosistemas, 13 (3), 2-6.
- Uribe,F. (2008). Insumos agrícolas biológicos. (Consultado en línea el 11 de febrero del 2021). https://www.hortalizas.com/miscelaneos/insumos-agricolas-biologicos/
- Villacís-Aldaz, L, Chungata, L, Pomboza, P, León, O. (2016). Compatibilidad y tiempo de sobrevivencia de cuatro microorganismos benéficos de uso agrícola en biol. Selva Andina Biosph., 4(1), 39-45. http://www.scielo.org.bo/pdf/jsab/v4n1/v4n1_a04.pdf Cabrera, M y Contreras, N. 2005. Manual de agricultura orgánica sostenible. Benson Agriculture and Food Institute. 52-55 p. https://docplayer.es/84689276-Manual-de-agricultura-organica-sustentable.html